Complex Dynamics of Fusion Plasmas and Nonlinear Photonics

Yannis Kominis

Associate Professor

Department of Mechanics

School of Applied Mathematical and Physical Sciences

National Technical University of Athens

Group Members and Collaborators

PhD Students

- Georgia Himona
- Yannis Antonenas
- Theodoros Bournelis

Post-doctoral Researchers

- Giorgos Anastassiou
- Panagiotis Zestanakis
- Panagiotis Papagiannis
- Fotis Bairaktaris

Undergrad. and MS students

ECE, NTUA

• Christos Tsironis (Assist. Prof.)

• Kyriakos Hizanidis (Prof. Emer.)

Collaborators

- Eleonora Viezzer (U. of Seville)
- Haris Skokos (U. of Cape Town)
- Vassilios Kovanis (Virginia Tech)
- Angelos Stavrou (Virginia Tech)
- Anastasios Bountis (U. of Patras)
- Kent D. Choquette (U. of Illinois, Urbana)
- Panayotis G. Kevrekidis (U. of Massachusetts, Amherst)
- Jesús Cuevas-Maraver (U. of Seville)
- Dimitrios J. Frantzeskakis (U. of Athens)
- Stefano Longhi (Politecnico di Milano)
- Sergej Flach (Institute for Basic Science, Daejeon, Korea)
- Abhay K. Ram (Plasma Science and Fusion Center, MIT)

Motivation, Approach and Research Fields

- Physical and man-made systems are inherently characterized by dynamical complexity
- Complexity is an enabler of advanced technological applications

- Reduced models for prediction, design and control
- Qualitative overview of system dynamics for the identification of essential properties for applications
- Systematic simulations for the detailed dynamics

Fusion Plasmas
 Nonlinear Photonics

Fusion Plasmas – EUROfusion programme

The EUROfusion programme is based on the **Roadmap to the Realisation** of Fusion Energy. The programme has two main pillars:

- Preparing for <u>ITER</u> experiments
- Developing a concept for the future demonstration fusion power plant
 <u>DEMO</u>

Another facet of the EUROfusion programme is to support fusion **Education and Training**.

EUROfusion is also actively involved in **Technology Transfer** activities.

Twenty-eight members, receive funding from Euratom for fusion projects in accordance with their participation in the missions and experiments outlined in the Roadmap.

Fusion Plasmas – Topics and Approach

Topics:

- Particle, Energy and Momentum Transport
- Fast Ion Physics
- Resonant Mode-Particle Interactions
- RF Wave-Particle Interactions
- RF-assisted Start-up

Approach:

- Hamiltonian formulation of charged particle dynamics in equilibrium and non-equilibrium magnetic fields
- Action-Angle description
- Orbital Spectrum analysis
- Reduced models for transport prediction and control

Fusion Plasmas – Orbital Spectrum Analysis

Orbital Tomography and Spectrum Analysis for Energy and Momentum Transport under Resonant Non-Axisymmetric Perturbations

Efficient Orbital Spectrum calculation based on judiciously selected magnetic flux surfaces of reference. Dashed lines: approximate orbits, Solid lines: exact orbits

Resonance conditions (red lines) on the **C**onstants **O**f the **M**otion (COM) orbit space (µ variable is fixed)

The analytical knowledge of the full skeleton of the **resonance structure**, allows to pinpoint the exact locations of resonances in the phase space.

Fusion Plasmas – Radial electric field (H-mode)

The presence of the edge radial electric field (inherent to H-mode operation):

- > Drastically modifies the orbital frequencies (bounce/transit, toroidal precession)
- > Changes the locations of resonant interactions with perturbative modes
- > Enables or prevents resonant interactions with specific modes
- Enables the formation of Transport Barriers
- Drastically modifies particle, momentum and energy transport

Orbital Spectrum (first row) and kinetic-q factor (s) (second row), without (left) and with (right) edge radial electric field.

The kinetic-q factor (s) predicts the **exact locations of the resonances**.

Local extrema correspond to locations of **Transport Barriers**.

Fusion Plasmas – Magnetic/Kinetic Chaos Detection

Kinetic versus Magnetic Chaos in Toroidal Plasmas: A systematic quantitative comparison

- Chaoticity determines transport properties and confinement performance of a fusion device
- Kinetic chaos is related to magnetic chaos only for low-energy particles
- Energetic particles undergo large drifts across the magnetic field lines and have different chaoticity

Magnetic field lines

Particle orbits (increasing energy \rightarrow)

Overview of orbit chaoticity and its relation to confinement

Chaos quantification: Smaller Alignment Index (SALI)

Fusion Plasmas – Fast Ion Losses

- > Estimate FI losses by means of the distribution of unperturbed resonance orbits.
- Resonance Index: Measure of susceptibility to chaotic transport by means of resonance overlap
- Comparison with experimental results: Fast Ion Loss Detector (FILD)

Phase diagram of orbit topology on the FILD plane

Resonance index and synthetic FI loss signal for different snapshots

10 Gyroradius (cm) $t-t_{ICRH} = 13 \text{ ms}$ 8 6 4 2 40 20 60 80 Pitch angle (°) 10 Gyroradius (cm) $t-t_{ICRH} = 33 \text{ ms}$ 8 6 4 2 20 40 60 80 Pitch angle (°)

FI losses measured by FILD probe

Fusion Plasmas – Wave-particle interactions

Study of Particle interactions with Spatially Localized Wavepackets

- Small-Amplitude Perturbations: Analytical results using Canonical Perturbation Theory
- Higher-Amplitude Perturbations: Systematic numerical investigation

Nonlinear Photonics – Topics and Approach

Topics:

- Self-localization and nonlinear wave propagation in complex media
- Non-Hermitian photonics
- Arrays of coupled semiconductor lasers
- Exploitation of the interplay between inhomogeneity (topology), non-Hermiticity (gain/loss) and non-linearity for complex dynamical behavior useful for photonic circuits, sensors and tunable photonic oscillators

Approach:

- Phase space analysis of self-localization dynamics
- Reduced models (effective particle) for complex wave propagation
- Coupled mode and rate equations models
- Bifurcation analysis in the parameter space
- Phase response and synchronization dynamics

Nonlinear Photonics – Active Waveguide Arrays

core 2

core 1

Discrete and **continuous, non-Hermitian** photonic structures.

Stable Nonlinear Supermodes

Modulational Instability/Stability

Exceptional Points (spectral degeneracies)

Nonlinear Photonics – Coupled Semiconductor Lasers

K.D. Choquette, IEEE JSTQE 25, 1700208 (2019)

Nonlinear Photonics – CSL: Stable Phase-Locking

- **Controllable asymmetry of the phase locked states Applications:**
- high-speed, non-mechanical beam steering
- on-demand waveform generation

Stability diagram of Phase-Locked states $\rho = E_2 / E_1$ (electric field amplitude ratio) θ (phase difference)

stable limit cycle

chaotic state

stable phase-locked state

stable phase-locked state

stable limit cycle

stable limit cycle

Nonlinear Photonics – CSL: Stable Phase-Locking

Spectral Signatures of Exceptional Points and Hopf Bifurcations Applications:

- tailored noise response (sensors)
- tailored current modulation response (transmitters)

to Hopf points

0.05

0.1

0.15

f[GHz]

0.2

0.25

0.05 0.1

0

0.15

f[GHz]

0.2

0.25

emergence of side bands and intensity peaks.

Nonlinear Photonics – CSL: Tunable RF Oscillations

Hopf frequencies f_H of stable limit cycles as functions of the asymmetry (ρ) and the phase difference (θ_s) of the corresponding phase-locked state as well as of the pumping difference P_1 - P_2 and detuning Δ .

Oscillation amplitude ratios (*R*) as a function of ρ and θ_s .

Radically tunable stable RF oscillations Applications:

- Frequencies ranging from a few to more than a hundred GHz (widely varying degree of asymmetry between the lasers)
- Directly controllable via differential pumping and/or frequency detuning
- Multi-functional oscillator for chip-scale radio-frequency photonics applications

Nonlinear Photonics – OIL:Isochrons/Synchronization

- Isochrons, Phase Response and Synchronization dynamics of Optically Injected Lasers Applications:
- ultra-fast modulation (transmitters)
- controllable chaos (secure communications)
- frequency comb shaping (frequency synthesis, ranging, waveform generation)
- precise time measurements photonic clocks (time-of-arrival, geo-location)

Stable limit cycle (black) and its lsochrons structure

Phase Response (top) and Resonance diagram (bottom)

Optically

Injected

Frequency Comb shaping

Nonlinear Photonics – Optomechanical Oscillators

